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Abstract: - As Kalman filter technology has better performance for estimation and prediction of dynamic 
signal, it is gradually used in GNSS signal tracking. According to the steady-state error, transfer function and 
equivalent noise bandwidth of Kalman filter and traditional loop in steady status, the tracking performance of 
these two methods is compared in theory. The theoretical analysis demonstrates that, the dynamic stress error of 
Kalman filter tracking is less than traditional loop. Kalman filter method can track dynamic signal accurately 
with small equivalent noise bandwidth. The analysis results are verified by simulation, and the simulation 
results show that the tracking sensitivity of Kalman filter is similar to that of the traditional loop. The Kalman 
filter tracking method has higher dynamics performance and better accuracy. 
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1 Introduction 
Tracking progress of GNSS receiver is 
essentially a problem of dynamic parameter 
estimation. Traditional tracking architecture 
uses two loops, Delay Locked Loop (DLL) and 
Phase Locked Loop (PLL). PLL is a carrier 
tracking loop, it adjusts the frequency and phase 
of local replicated signal to consist with 
incoming signal. Its basic concept is to model 
the incoming signal as known dynamics, and 
determine the optimal filter structure by Wiener 
filter approach. The details of the traditional 
PLL method can be found in many references 
on GNSS signal processing [1]. 

As Kalman filter (KF) theory can estimate and 
predict dynamic signal quite well, it is gradually 
used for GNSS signal tracking process. In addition, 
the newest GNSS receiver tracking algorithm, 
vector based tracking algorithm is realized based on 
KF [2]. Therefore, using KF to track GNSS signal 
has become a main research direction in navigation 
field. There are many different KF methods for the 
GNSS receiver’s signal tracking loops, different 
researchers have different ways to classify these 
methods, but their fundamentals are the same. If 
classified by observation, these methods can be 
divided to two categories [3]：Kalman filter with 
discriminator output as observation; Extended 
Kalman filter (EKF) with nonlinear observation of I 

and Q correlator outputs. Main difference between 
them is that, the model for using discriminator value 
as observation is linear, so it uses KF, and that for 
using baseband I and Q correlation values as 
observation is nonlinear, so it uses EKF. If classified 
by filtering state and observation, they can be 
divided to four categories [4]: Error state EKF for a 
loop filter with nonlinear observation of I and Q 
correlator outputs; Error state linear KF for a loop 
filter with discriminator output as observation; Error 
state KF for a loop filter with discriminator output 
as observation; Direct state KF for an entire signal 
tracking loop with discriminator output as 
observation residuals. The main difference between 
the second and third methods is that, the second 
method uses discriminator output of coherent 
integration at initial time as observation, and the 
third method uses the average of discriminator 
output during the whole coherent integration process. 
Kalman filter used in this paper is the third method. 
It uses the average of discriminator output as 
observation, and signal parameter error as filtering 
state. 

Traditional PLL and Kalman filter both can 
realize GNSS signal tracking, so the difference and 
relationship between these two methods gradually 
becomes an important research point. Certain effect 
has been obtained by using EKF to realize digital 
phase locked loop (DPLL) [5]. It has been proved 
that the traditional PLL structure can be transformed 
to the similar structure of Kalman filter [6], and 
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Kalman filter also can be transformed to the similar 
structure of PLL [7]. The form of steady-state 
Kalman filter is similar to that of traditional PLL. 
The equivalent noise bandwidths can be compared 
for relevant research of these two tracking methods, 
but it has less research [8]. In order to derive the 
equivalent loop bandwidth of steady-state Kalman 
filter, steady-state Kalman gain was written into a 
form similar to the gain of PLL [9]. Many 
mathematic approximates were made to illustrate 
the relationship between them. However, the 
research results needed to be tested and verified. 
After that, the equivalent loop bandwidth of EKF 
tracking method was obtained by experimental 
performance, and compared with standard PLL [10]. 
Two approaches were adopted to get it: the first was 
to find the equivalent PLL that gave the same 
performance as the steady-state EKF, and the 
second was to find an equivalent EKF that gave the 
same performance as the PLL. It was proved that 
Kalman filter has faster adaption and higher 
sensitivity than standard PLL. 

Taking second order carrier tracking loop for 
example, the carrier tracking method based on 
Kalman filter is researched, and the design method 
of filtering parameters is also given under the 
stability condition of steady-state Kalman filter. 
According to the similar architecture of steady-state 
Kalman filter and traditional second order PLL, the 
closed loop transfer function of steady-state Kalman 
filter is derived, and its equivalent noise bandwidth 
and steady-state error are also calculated. By 
comparing above parameters with that of traditional 
PLL, the reason of Kalman filter having better 
performance than traditional loop is analyzed. 
Finally, the theoretical analysis results are verified 
by simulation. 

 
 

2 Carrier tracking model for Kalman 
filter 
Satellite signal received by satellite navigation 
receiver antenna can be expressed as follows: 

 0( ) ( ) 2 cos( 2 ) ( ) ( )r t d t C f t c t n tπ θ τ= + − +  (1) 
where ( )d t  is data code, C  is carrier power, f  is 

carrier frequency including Doppler effects, 0θ  is 
initial carrier phase, ( )c t  is ranging code, τ  is 
instantaneous code phase, and ( )n t  is additive 
observation noise. 

Unknown parameters in the model are code 
phase, carrier phase and carrier Doppler frequency. 
To realize satellite navigation and positioning, it 
needs to estimate these parameters accurately, and 

acquire observation information of pseudo-range 
and its rate. As satellites and vehicle moving with 
time, these navigation parameters are dynamic. The 
real-time estimation process of these parameters is 
referred to as signal tracking. In satellite navigation 
receiver, the incoming signal after digital sampling 
is correlated with a local replica to wipe-off the 
spreading code, and to accumulate signal energy to 
increase detectability and tracking performance. 
Carrier tracking is realized by correlating with two 
quadrature replicas of a locally generated carrier in 
two branches. After 1ms coherent integral 
accumulation, the models of I branch and Q branch 
are expressed as follows. 

 

_

( ) cos( ) ( )
2

θ τ∆ = ∆ ∆ + ∆ +k k m
k k k Ik

N A dI R n
 (2) 

 

_

( ) sin( ) ( )
2

θ τ∆ = − ∆ ∆ + ∆ +k k m
k k k Qk

N A dQ R n
 (3) 

where, ∆  is code offset of local reference code 
relative to prompt code (early code ∆ >0, and late 
code ∆ <0), kN  is the number of sampling points in 

coherent integral time, 
_

kA  is the average carrier 
phase amplitude in coherent integral time, md  is 
navigation bit, θ∆ k  is the carrier phase error in 
coherent integral time, τ∆ k  is the code phase error in 
coherent integral time, Ikn  and Qkn  are uncorrelated 
discrete Gaussian white noise sequences. 

The phase discriminator output of 1ms coherent 
integral accumulation is θ∆ k , and it is regarded as the 
average carrier phase error in integral interval. Two-
quadrant arctangent phase discriminator is used for 
second order carrier phase tracking loop, and the 
output of discriminator is shown as follows: 

 
( )( ) tan( ) ( ) ( )
( )

θ= − ≈ ∆ +
QP kZ k a k v k
IP k  (4) 

Where ( )v k  is random noise of discriminator 
output. 

The output of discriminator ( )Z k  is the input of 
Kalman filter. 

Basic equations of Kalman filter are as follows: 
(a) project the state ahead 

 / 1 , 1 1
ˆ

k̂ k k k kX X− − −= Φ  (5) 
(b) update estimate with measurement 

 ( )/ 1 / 1
ˆˆˆ

k k k k k k k kX X K Z H X− −= + −  （6) 
(c) compute the Kalman gain 

 ( ) 1

/ 1 / 1
T T

k k k k k k k k kK P H H P H R
−

− −= +  (7) 
(d) project the error covariance ahead 
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 / 1 , 1 1 . 1 1
T

k k k k k k k kP P Q− − − − −= Φ Φ +  (8) 
(e) update the error covariance 

 ( ) ( )/ 1

T T
k k k k k k k k k kP I K H P I K H K R K−= − − +  (9) 
Kalman filter using in GNSS signal tracking was 

realized based on these five equations. In this paper, 
GNSS signal was processed in signal channel. How 
to set state X, observation Z, observation matrix H, 
one step transfer matrix Φ  will be illustrated in this 
section. How to set observation noise variance 
matrix R and driving noise variance matrix Q is the 
key point of Kalman filter, it will be illustrated in 
next section. 

When second order carrier phase tracking loop of 
GPS signal is realized by Kalman filter, continuous 
dynamic carrier is modeled as follows: 

 

( )
0 1
0 0

θ θ
•

•

 
∆ ∆     = +     ∆    ∆ 

w t
f

f  (10) 
Where θ∆ is the average carrier phase error in 

integral interval, ∆f  is the average Doppler 
frequency error in integral interval, and ( )w t  is 
Gaussian white noise vector with zero mean. 

Carrier phase error of discriminator output is 
used as observation of Kalman filter, the 
relationship of observation Z  and system state 
variable θ∆ , ∆f  is expressed as follows: 

 
[ ]1 0

θ∆ 
= + ∆ 

Z v
f  (11) 

Therefore, observation matrix is [ ]1 0=H . 
Continuous state equation is: 

 ( ) ( ) ( ) ( ) ( )= + t t t t w tx F x G  (12) 

where 0 1
( )

0 0
 

=  
 

tF ， ( )
1 0
0 1
 

=  
 

G t ，and ( )w t  is 

driving noise matrix with 2*1 dimension. 
The state equation after discretization is: 

 1 1− −= Φ +k k kX X W  (13) 
Where Φ  is one step transfer matrix, and 1−kW  is 

driving noise sequence. 

System state vector is θ∆ 
=  ∆ 

k
k

k
X

f
. 

One step transfer matrix is: 

 

2 3
2 3

2
2

...
2! 3!

2!
1
0 1

Φ = + + + +

≈ + +

 
=  
 

T TI TF F F

TI TF F

T

 (14) 
1 1{ }− −= T

k k kQ E W W  is discrete driving noise variance 
matrix, it can be calculated according to the 

continuous driving noise variance matrix q ( q is 2*2 
matrix). 

 

2 3

1 2 3
T T ...
1! 2! 3!

= ⋅ + ⋅ + ⋅ +k
TQ M M M

 (15) 
Only adopting the first and second term of (15), 

the approximate treatment of discrete driving noise 
variance matrix is: 

 
( ) ( )

2

1 2

2

T T
1! 2!

1
2

≈ ⋅ + ⋅

= ⋅ + ⋅ +

k

T T T T

Q M M

T GqG T GqG F FGqG
 (16) 

Discrete observation of Kalman filter 
is θ= ∆ +k k kZ V , where kV  is observation noise 
sequence. 

 
 

3 Parameter design of Kalman filter 
tracking 
The Kalman filtering model of second order carrier 
tracking is constant velocity (CV) model with 
constant coefficient, so the carrier tracking filter is 
stable Kalman filter (time-invariant or constant 
coefficient Kalman filter). Comparing with normal 
Kalman filter, stable Kalman filter should meet 
following three conditions. 

(a) State model and observation model are time 
invariant. 

 
( ) ( ) ( )
( ) ( ) ( )

= +
= +

x t Fx t Gw t
z t Hx t v t  (17) 

(b) Driving noise and observation noise are wide 
stable at least. 

 
cov{ ( ) ( )} ( ) ( )
cov{ ( ) ( )} ( ) ( )

τ τ δ τ
τ τ δ τ
+ = = ⋅
+ = = ⋅

w t w t q q
v t v t R R  (18) 

(c) Observation interval begins at the moment. 
→−∞t . 

When Kalman filter is stable, its closed loop 
transfer function and equivalent noise bandwidth 
can be obtained. According to the driving noise 
variance matrix and observation noise variance 
matrix, the state estimation covariance matrix and 
filtering gain matrix can be calculated. 

When Kalman filter arrives to steady status, 
=kP P ，which is: 

 ( )( )1−= − Φ Φ +T TP I PH R H P Q
 (19) 

The observation of Kalman filter is carrier phase 
error of discriminator output, so the observation 
noise variance matrix R is the variance of carrier 
phase error. 

 
2

0

1
2 /

R
C NTδϕσ= =

 (20) 
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When carrier noise ratio of normal signal is 
44dB-Hz, and the coherent integral time is 1 ms, the 
value of R is 20.1411=R  

The driving noise variance matrix of Kalman 
filter mainly depends on the relative dynamic 
between satellite and receiver and crystal oscillator 
error [11]. Radial acceleration of GPS satellite 
relative to earth surface is expressed as follows: 

( )
( )

2 2 2

3
2 2 2

[ si n si n ]

2 si n

d

e e s e s e s

e s e s

dv da
d dt

vr r r r r r r d
dt

r r r r

θ
θ

θ θ θ

θ

= ⋅

− + +
= ⋅

+ −  (21) 
Where the average radius of earth is 

66368 6.368 10 m≈ = ×er km , the average radius of 
satellite orbit is 726560 2.656 10≈ = ×sr km m , the angular 
velocity of satellite is 

42 1.458 10 /
11 3600 58 60 2.05

θ π −= ≈ ×
× + × +

d rad s
dt

, and 

satellite velocity is 3874 /θ
= ≈sr dv m s

dt
. 

The maximum radial acceleration of GPS 
satellite relative to earth surface is 20.178 /m s , and its 
corresponding Doppler frequency rate is: 

 

6
1 8

0. 178 1575. 42 10
3 10

0. 935 / 5. 875 /

doppl er L
af f
c

Hz s r ad s

∆ = = × ×
×

= =  (22) 
In GPS receiver, main factors of crystal oscillator 

error influence on the driving noise of Kalman filter 
are frequency random walk coefficient 2−h and white 
noise frequency coefficient 0h [12]. 

Carrier phase noise variance caused by crystal 
oscillator error is: 

 
2 0

0( 2 )
2TCXO
hq fϕ π= ×

  (23) 
Doppler frequency noise variance caused by 

crystal oscillator error is: 

 
2 2

0 2( 2 ) 2f TCXOq f hπ π −= ×  (24) 
According to the crystal oscillator type and 

parameter of GPS receiver, ϕq and fq  can be 
calculated, and the driving noise variance matrix of 

continuous Kalman filter is ( )2

0

0
ϕ 

 =
+ ∆  f doppler

q
q

q f
. 

Assume that the solution of steady-state P matrix 

is 11 12

21 22

 
=  
 

P P
P

P P
, and take it into equation (19). We 

can get its final solution by method of undetermined 
coefficients. 

Using matrix P can calculate the gain matrix K 
of Kalman filter, which is: 

 

11
11 121

21 22 21

1 1
0

−

 
    

= = =     
   
  

T

P
P P rK PH r
P P Pr

r   (25) 
In following part, Kalman filter method is used 

to track static GPS signal with different power, its 
model is given in the first section, and its 
observation noise variance matrix R and continuous 
driving noise variance matrix q can be calculated by 
(20)-(24). GPS signal is produced by simulator. The 
simulated signal does not include crystal oscillator 
error, so the design of q ignores its influence. With 
fixed values of q and R, K and P of Kalman filter 
changing with the time are shown in Fig.1 and Fig.2. 
From these figures we can see that after Kalman 
filter convergence, the values of K and P don’t 
change with time. When Kalman filter is in steady 
status, through equation (19) and (25), we can 
calculate K and P corresponding to different 
observation noise variance matrix R and continuous 
driving noise variance matrix q, which are shown in 
figure 3 and figure 4. 

 
Fig.1 matrix K changing with time 
 

 
Fig. 2 matrix P changing with time 
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Fig. 3 matrix K corresponding to different q and R 

 
Fig. 4 matrix P corresponding to different q and R 

Fig. 3 and Fig. 4 show that under the condition of 
steady-state Kalman filter, K and P are completely 
determined by R and q. Once R and q are fixed, 
Kalman filter will converge to the same fixed value. 

 
 

4 Theoretical tracking performance 
comparison and analysis between 
Kalman filter and traditional PLL 
 
 
4.1 The steady-state error analysis of 
discriminator output 
According to the analysis of previous section, 
steady-state estimation error of Kalman filter is 
shown in equation (19). In order to compare 
theoretical performance of second order Kalman 
filter and traditional PLL by locking loss 
determination, we compare the steady-state 
discriminator output errors of these two methods. 

For Kalman filter tracking method, the error of 
carrier tracking discriminator output is observation 
residual (it is also called new message). Under 
steady-state Kalman filter status, the observation 
residual is Gaussian noise with zero mean, so the 
variance of observation residual error is steady-state 
error of Kalman filter tracking. 

 / 1
T

kal man k k k k kH P H Rσ −= +   (26) 

For traditional PLL tracking loop, the standard 
deviation of two quadrant arctangent discriminator 
output phase error caused by thermal noise is: 

 0

360 1 （degr ee）
2 2 /noi se C NT

σ
π

=
  (27) 

For traditional second order PLL tracking loop, 
the steady-state error of two quadrant arctangent 
discriminator output caused by dynamics is: 

2 2 2 2

2 2
0

/ /0. 2809（degr ee）dynami c
n

d R dt d R dt
B

σ
ω

= =
 (28) 

Where, for GPS L1 band signal, steady-state 
error caused by 210 /m s acceleration is: 

 

2
2

2

6

2

(10 / ) ( 360 / cycl e)

( (1575. 42) 10 cycl e/ s) / c
=18905 / s

d R m s
dt

= × ° ×

×

°  (29) 
For discriminator output carrier phase errors of 

Kalman filter and traditional PLL, according to 
equation (20), we can see that the steady-state errors 
caused by thermal noise of these two methods are 
same, but the steady-state errors caused by dynamic 
stress are different. For different signal power and 
vehicle dynamics, the steady-state carrier phase 
errors of Kalman filter and traditional PLL are 
shown in figure 5. 

 
Fig. 5 discriminator output carrier phase errors of 

Kalman filter and traditional PLL 
From Fig. 5 we can see that, when there is no 

radial dynamics between satellite and receiver, 
discriminator output errors of Kalman filter and 
traditional PLL have little difference, and this error 
is mainly determined by signal power. When there 
is a high radial dynamics between satellite and 
receiver, the discriminator output error of Kalman 
filter is less than that of traditional PLL. If 
discriminator output error reaches its linear range of 
90 degrees, the loop will lose lock. Traditional PLL 
with equivalent noise bandwidth 15nB Hz=  loses 
lock when there is 230 /m s acceleration dynamics, 
but Kalman filter does not lose lock under this 
dynamic condition. Therefore, Kalman filter has 
more powerful ability than traditional PLL for 
tracking dynamic signal. 
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4.2 Analysis of equivalent noise bandwidth 
According to equation (28) we can know that, the 
steady-state error of traditional PLL caused by 
dynamic stress is related to equivalent noise 
bandwidth. Therefore, we will analyze the 
equivalent noise bandwidth of Kalman filter, and 
find the reason why Kalman filter has better 
performance than traditional loop. 

According to the analysis of the second section, 
carrier tracking Kalman filter is stable, so we can 
get its closed loop transfer function and equivalent 
noise bandwidth. From continuous Kalman filter 
equation of carrier tracking loop, state estimation 
value is: 

 
ˆˆˆ( ) ( ) ( )[ ( ) ( )]

ˆ[ ( ) ] ( ) ( ) ( )
= + −
= − +

x t Fx t K t z t Hx t
F K t H x t K t z t  (29) 

Take Laplace transform on both side of equation 
(29), we can get: 
 

1ˆ ( ) ( ) ( )−= − +X s sI F KH KZ s  (30) 
Transfer function of stable Kalman filter is 

calculated as follows: 
 1 1ˆ( ) ( ) ( ) ( )H s X s Z s sI F KH K− −= = − +   (31) 

Closed loop transfer function of Kalman filter is: 

 

1

1 2
2

1 20

1 2 1 1 2
2

1 2

( ) ( )

( )
( ) (1 )

−=

+ 
 + +   = =   − + 
 + + 

s s
K s K

s K s KH s
H s K K s K K

s K s K

H I - F + KH K

 (32) 

The gain matrix of Kalman filter is 1

2

 
=  
 

K
K

K
 

Then, the closed loop transfer function of steady-
state Kalman filter is: 

 
( ) 1 2

0 2
1 2

+
=

+ +
K s KH s

s K s K   (33) 
The corresponding equivalent noise bandwidth is 

[13]: 

 ( )
( ) ( ) 2

12
1

1 1
2 42 0 π

∞

− ∞

 
= − = + 

 
∫
j

n
j

ds KB H s H s K
j KH  (34) 

From equation (34) we can know that the 
equivalent noise bandwidth of Kalman filter is 
related to the gain value of Kalman filter. For 
different signal power and dynamics, we can 
calculate different Q and R. By equation (19) and 
(25), we can get the gain matrix K after Kalman 
filter convergence, and then through equation (34), 
we can finally get equivalent noise bandwidths of 
Kalman filter under different signal conditions, 
which are shown in Fig. 6. 

 
Fig. 6 Equivalent noise bandwidths of Kalman filter 

under different signal conditions 
From Fig. 6 we can see that, when signal power 

becomes weaker, the equivalent noise bandwidth 
decreases, and when signal dynamics becomes 
higher, the bandwidth increases. Therefore, the 
equivalent noise bandwidth of Kalman filter is 
determined by signal power and dynamics. Normal 
GPS signal power is always near 44dB-Hz, and the 
radial acceleration between receiver and satellite is 
usually less than for 23 /m s low dynamic vehicle. 
So the equivalent noise bandwidth is 1. 2nB Hz=  for 
the normal parameter of Kalman filter. 

Gain value and equivalent noise bandwidths of 
steady-state Kalman filter with typical signal power 
and dynamics are shown in table 1. 

Table 1 Bandwidth Bn and gain K with different 
signal power and dynamics 

Signal 
power 
（dB-

Hz） 

Signal 
dynamics 
（m/s2

） 

Phase 
gain 
K1 

Frequency 
gain K2 

Bandwidth 
Bn 

(Hz) 

44 0.2 0.017299 0.024087 0.35187 
44 1 0.043296 0.153338 0.89214 
44 5 0.088755 0.65727 1.8731 
44 10 0.120377 1.22994 2.5853 
44 30 0.196333 3.428988 4.4121 
36 0.2 0.00732 0.003749 0.14824 
36 1 0.025075 0.051077 0.51198 
36 5 0.056348 0.260985 1.1689 
36 10 0.073049 0.441823 1.5287 
36 30 0.118199 1.184366 2.5354 

It can be seen from Table 1 that, with normal 
signal power and dynamics, the equivalent noise 
bandwidth of Kalman filter is less than 5 Hz，and it 
is much smaller than the bandwidth of traditional 
PLL. Therefore, Kalman filter tracking has better 
ability in noise suppression. 

 
 

4.3 Analysis of Doppler frequency estimation 
accuracy 
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Doppler frequency estimation error of Kalman filter 
can be represented by the frequency dimension 
value of state estimation covariance matrix at steady 
status. The relationship between frequency 
estimation error and phase estimation error of 
traditional PLL is expressed as follows: 

 

2 2
2 24

3
L

f
B

ε εθ

κ π
σ σ=

  (35) 
Where the value of coefficient κ  approximates 

to 4 when the equivalent noise bandwidth of PLL is 
about 10 Hz. 

The phase estimation error of traditional PLL is: 

 
2 2 2

3
e

PLL t PLL v Aθ

θ
σ σ σ θ= + + +

 (36) 
Where, it is taken no account to oscillator quiver 

vσ caused by shake and oscillator vibration Aθ  
caused by Allen deviation. 

The error caused by thermal noise is: 

 0

360
2 /

n
t PLL

B
C N

σ
π

=
 (37) 

The error caused by dynamic stress is: 

 

2 2 2 2

2 2
0

/ /0. 2809e
n

d R dt d R dt
B

θ
ω

= =
 (38) 

According to (35)-(38), we can calculate the 
theoretical Doppler frequency accuracy of 
traditional PLL. Theoretical Doppler frequency 
accuracies of Kalman filter and traditional PLL with 
equivalent noise bandwidth 15 Hz are shown in 
figure 7. 

 
Fig. 7 Doppler frequency accuracies of KF and 

PLL under different signal conditions 
From Fig. 7 we can see that, frequency 

estimation accuracy of Kalman filter is much higher 
than that of traditional PLL, especially in high 
dynamics. The main reason is that Kalman filter has 
smaller equivalent noise bandwidth than traditional 
PLL under normal signal conditions. 
5 Tracking performance simulation 
comparison and analysis 
In order to validate the theoretical performance 
analysis results of Kalman filter and traditional PLL 

tracking methods, in this section, the tracking 
sensitivity, dynamic adaptability and tracking 
accuracy of these two methods are tested and 
analyzed by simulation, and the equivalent noise 
bandwidth is used as comparing parameter. 

(a)Tracking sensitivity analysis 
The GPS data is collected from actual 

environment, and its signal power is reduced 1dB 
for every 10s after 50s by adding gradually 
increasing noise into the data. Kalman filter and 
traditional PLL with different equivalent noise 
bandwidth are adopted to track the signal, and their 
output Doppler frequencies are shown in figure 7 
and figure 8. When the output Doppler frequency is 
wrong, the signal power at this time is their tracking 
sensitivity. 

 
Fig. 8(a) Tracking sensitivity of PLL 

 
Fig. 8(b) Tracking sensitivity of Kalman filter 
Table 2 Tracking sensitivity of Kalman filter and 

PLL 
Bandwidth Bn 

(Hz) 
Tracking 

sensitivity of 
Kalman 

filter(dB-Hz) 

Tracking 
sensitivity of 

PLL 
(dB-Hz) 

0.127 42.5 Can’t work 
1.2694 36.5 Can’t work 
4.011 37 Can’t work 
7.1271 37 36.5 
15 37.5 36.5 
30 38.5 35 
50  36 
It can be seen from figure 8(a), figure 8(b) and 

table 2 that, Kalman filter with normal parameter 
( 1. 27nB Hz= ) and traditional PLL with normal 
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parameter ( 15nB Hz= ) have approximately same 
tracking sensitivity 36. 5 - zdB H . The Kalman filter 
with normal parameter has the highest tracking 
sensitivity of all different bandwidths, so choosing 

1. 27nB Hz=  as normal parameter is reasonable. The 
situation of PLL is not the same. The PLL with 
normal parameter 15nB Hz=  has lower tracking 
sensitivity than that with parameter 30nB Hz= . The 
main reason of choosing 15nB Hz=  as normal 
parameter is that the tracking accuracy of 30nB Hz=  
is obviously lower than that of 15nB Hz=  (it can be 
seen from figure 8(a)). In addition, when the 
equivalent noise bandwidth is less than 4 Hz，PLL 
cannot work any longer. This is because that the 
carrier phase error caused by crystal oscillator and 
radial acceleration between satellite and receiver is 
too large, so the noise bandwidth of PLL always 
larger than 5 Hz. 

(b) Tracking dynamic adaptability analysis 
In order to test dynamic adaptability of tracking 

method, GPS data is produced by simulator. Its 
signal power is -160dBW, and initial Doppler 
frequency is 0 Hz, with 22 /Hz s （ equivalent to 

30. 38m/ s ）jerk all the time. The same test method 
is used for Kalman filter, but as Kalman filter has 
much better performance than PLL in tracking 
dynamic signal, so the GPS data used to test Kalman 
filter has a large jerk 2180 /Hz s （ equivalent to 

334. 28m/ s ）.  The acceleration of dynamic signal 
gradually increases with time. Kalman filter and 
PLL with different equivalent noise bandwidths are 
adopted to track these signals, and the output 
Doppler frequencies are shown in figure 9 and 
figure 10. When the output Doppler frequency is 
wrong, the acceleration at this time is the dynamics 
limitation of the tracking method. 

There is something should be interpreted, for 
GPS L1 band signal, the relationship between 

frequency rate and acceleration
'

1L

a f
c f

=  is, 

1 /Hz s frequency rate is equivalent 
to 20. 1904m/ s acceleration. All the simulations 
below use GPS data produced by simulator, and the 
acceleration is realized by designing frequency rate. 
Therefore, in the following analysis, frequency rate 
is used to present acceleration dynamics. 

 
Fig. 9 dynamic adaptability of PLL tracking 

 
Fig. 10 dynamic adaptability of Kalman filter 

tracking 
Table 3 dynamic adaptability of PLL and 

Kalman filter tracking 
Bandw

idth Bn 
（ Hz

） 

max 
Doppler 
frequency rate 
of PLL tracking 

（ /Hz s
） 

max Doppler 
frequency rate of 
Kalman filter 
tracking 

（ /Hz s ） 

5 17.0 2750 
8 43.4 4572 
10 66.3 4938 
12 93.8 6141 
15 134.5 6833 
From figure9, figure10 and table3 we can see 

that, Kalman filter has more powerful ability in 
tracking dynamic signal than traditional PLL. Next, 
we will analyze the reason why Kalman filter can 
track higher dynamic signal than traditional PLL, 
according to the carrier phase errors of these two 
tracking methods with the same equivalent noise 
bandwidth. 
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Fig. 11 discriminator output carrier phase error 

of PLL 

 
Fig. 12 discriminator output carrier phase error 

of Kalman filter 
It can be seen from figure11 and figure12 that, 

Kalman filter and PLL have the same principle of 
losing lock. When the sum of the random error 
caused by thermal noise and the steady-state error 
caused by dynamic exceeds 90 degrees, which is the 
linear range of two-quadrant arctangent 
discriminator, the loop will lose lock. 

According to equation (26), we can know that 
the phase error caused by thermal noise of PLL has 
little relationship with loop parameters. It is mainly 
determined by signal power and loop update time. 
The phase error of Kalman filter caused by thermal 
noise has the same principle with that of PLL. 
However, Kalman filter in the simulation uses fixed 
matrix Q and matrix R, and it means the model of 
Kalman filter is fixed. Therefore, with acceleration 
gradually increasing, the difference between 
Kalman filter model and actual signal is becoming 
larger, so the phase error caused by thermal noise is 
also becoming larger. When the acceleration 
dynamics of this signal is small, the phase error of 
Kalman filter caused by thermal noise is similar to 
that of traditional PLL. 

Steady-state error caused by acceleration 
dynamics of PLL is expressed as equation (27). 
With acceleration increasing, discriminator output 
steady-state error is also increased. The PLL with 
bandwidth 15nB Hz=  loses lock when frequency 

rate reaches 134. 5 /Hz s , and the PLL with 
bandwidth 10nB Hz=  loses lock when frequency 
rate reaches 66. 3 /Hz s . The Kalman filter with 
bandwidth 15nB Hz=  loses lock when frequency 
rate reaches 6833 /Hz s , and the Kalman filter with 
bandwidth 10nB Hz=  loses lock when frequency 
rate reaches 4938 /Hz s . Therefore, with the same 
equivalent noise bandwidth, Kalman filter has better 
performance in tracking dynamic signal than 
traditional PLL. 

However, from figure 8 it can be seen that the 
frequency accuracy of Kalman filter with large 
bandwidth is low. Based on the analysis of section 
3.2, we know that the Kalman filter with normal 
parameter has small equivalent noise bandwidth 
(which is 1.2Hz) under normal GPS signal 
conditions. The bandwidth is much smaller than that 
of the traditional PLL with normal parameter (which 
is 15Hz). Therefore, we compare the discriminator 
output steady-state errors of Kalman filter and PLL 
with normal parameter in figure 13. 

 
Fig. 13 Discriminator output steady-state errors 

of PLL and Kalman filter with normal parameter 
From figure13 we can see that, when frequency 

rate reaches 290 /Hz s , Kalman filter with bandwidth 
1. 2nB Hz=  loses lock. Although the equivalent 

noise bandwidth of Kalman filter with normal 
parameter is only 1.2 Hz, it still has more powerful 
ability in tracking dynamic signal than PLL with 
bandwidth 15 Hz. This simulation result 
corresponds to the analysis results of discriminator 
output steady-state error in section 3.1. The steady-
state error of Kalman filter caused by acceleration is 
less than that of traditional PLL. This is the main 
reason why Kalman filter can track higher dynamic 
signal than traditional PLL. 

(c) Tracking accuracy analysis 
Kalman filter with normal parameter 

( 1. 2nB Hz= ) and traditional PLL with 15nB Hz=  are 
adopted to track static signal whose power is -
160dBW. The output Doppler frequencies of these 
two methods are shown in figure14. 
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Fig. 14 Doppler frequency accuracies of PLL 

and Kalman filter with normal parameter 
Doppler frequency error’s standard deviation of 

Kalman filter ( 1. 2nB Hz= ) is 0.192 Hz, and that of 
traditional PLL ( 15nB Hz= ) is 1.33 Hz. So the 
Doppler frequency accuracy of Kalman filter is 
much higher than that of PLL. The main reason is 
that the less the equivalent noise bandwidth of 
tracking method is, the higher the tracking accuracy 
is. 
6 Conclusions 
In order to compare the performance of Kalman 
filter and traditional PLL tracking GPS signals, this 
paper analyses the steady-state error, closed loop 
transfer function and equivalent noise bandwidth of 
these two methods in theory. The analysis results 
show that the dynamic stress error of Kalman filter 
is less than traditional PLL. Kalman filter can track 
dynamic signal accurately with lower equivalent 
noise bandwidth. The theoretical analysis results are 
also verified by simulation. It can be seen from the 
simulation results that Kalman filter has the same 
tracking sensitivity with traditional PLL, and has 
better dynamic adaptability and tracking accuracy 
than PLL. Kalman filter can estimate and predict 
dynamic signal very well, so it can take small 
equivalent noise bandwidth to track normal GPS 
signal, and has higher tracking accuracy. 
 
 
Reference 
[1] E.D.Kaplan, C.J.Hegarty, Understanding GPS: 

Principles and Applications, Artech House 
Publishers, second ed. 2006.  

[2] Matthew Lashley, Modeling and Performance 
Analysis of GPS Vector Tracking Algorithms, 
Auburn University PhD, Alabama, December 
2009. 

[3] Matthew Lashley, David M. Bevly, John 
Y.Hung, Performance Analysis of Vector 
Tracking Algorithms for Weak GPS Signals in 
High Dynamics, Selected topics in Signal 
Processing VOL.3, NO.4, August 2009. 

[4] Jong-Hoon Won, Dominick Dotterbock, Bernd 
Eissfeller, Performance comparison of 
Different forms of Kalman Filter Approach for 
a Vector-Based GNSS Signal Tracking Loop, 
22th International Meeting of Satellite Division 
of the institute of Navigation, Savannach, GA, 
September 2009. 

[5] Tsai Sheng Kao, Sheng Chih Chen, Yuan Chang 
Chang, Extended Kalman Filtering and Phase 
Detector Modeling for a Digital Phase Locked 
Loop, WSEAS Transactions on 
Communications, Issue 8, Vol. 8,2009. 

[6] Ara Patapoutian, On phase-locked loops and 
Kalman filters, IEEE Transaction on 
communications vol.47, May 1999, pp670-672. 

[7] Cillian O’Driscoll, Mark G. Petovello, Gerard 
Lachapelle, Choosing the coherent integration 
time for Kalman filter-based carrier-phase 
tracking of GNSS signals, GPS Solutions DOI: 
10.1007. 09. December 2010. 

[8] Cillian O’Driscoll, Gerard Lachapelle, 
Comparison of traditional and Kalman filter 
based tracking architectures, European 
Navigation Conference Naples. Italy May 
2009. 

[9] Qian Yi, Cui Xiaowei, Lu Mingquan, Steady-
state performance of Kalman filter for DPLL 
Tsinghua Science and Technology Volume 14 
Number 4 August 2009. 

[10] Dina Reda Salem, Cillian O’Driscoll, Gérard 
Lachapelle, Methodology for comparing two 
carrier phase tracking techniques, GPS 
solutions , DOI: 10.1007/s10291-011-0222-z, 
2011. 

[11] Mark L. Psiaki, Hee Jung, Extended Kalman 
filter methods for tracking weak GPS signals. 
ION GPS 2002, 24-27 September, Portland, 
OR. 

[12]A.J.Van Dierendonck, J.B.McGraw, 
Relationship between Allan variances and 
kalman filter parameters, Proc. 16th Annual 
Precise Time and Time Interval(PTTI) 
Applications and Planning Meeting, NASA 
Goddard Space Filter Center, 1984, pp273-293. 

[13] Brown RG. Hwang PYG, Introduction to 
random signals and applied Kalman filter, 3rd 
edn. Wiley, New York 1997. 

 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Xingli Sun, Honglei Qin, Jingyi Niu

E-ISSN: 2224-3488 108 Issue 3, Volume 9, July 2013

http://www.springerlink.com/content/?Author=Dina+Reda+Salem�
http://www.springerlink.com/content/?Author=Cillian+O%e2%80%99Driscoll�
http://www.springerlink.com/content/?Author=G%c3%a9rard+Lachapelle�
http://www.springerlink.com/content/?Author=G%c3%a9rard+Lachapelle�
http://www.springerlink.com/content/?Author=G%c3%a9rard+Lachapelle�



